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Abstract   Electromagnetic induction (EMI: 10's of Hz to 100's of kHz) is the leading technology for 
discrimination of subsurface metallic targets such as unexploded ordnance (UXO). The cleanup problem 
requires solution of remote sensing inverse problem inevitably based on some very fast forward 
algorithms for calculating EMI.  The forward model must determine responses of arbitrarily complicated 
metallic objects. Here a very fast and complete forward solution system is presented, based on 
fundamental mode excitations. For a given target (or a set of targets), the EMI responses to fundamental 
modes are obtained from training data and saved. Any realistic excitation field is then decomposed into a 
limited number of constituent fundamental modes and the scatterer's EMI response is obtained by 
superposition of the fundamental mode solutions. In this paper we define the fundamental excitations 
explicitly and consider their rationale; show how to construct any particular solutions from solutions to 
the fundamental excitations; and focus particularly on how to obtain, retain, express responses to the 
fundamental solutions in the face of inherent ill-conditioning. 

1 Introduction 
 

Cleanup of UXO sites is extremely expensive because of high false alarm rates.  Given that there are over 
10,000,000 acres of land with potential UXO hazard in the US alone, reliable techniques for UXO 
discrimination are urgently needed. As an inverse problem, UXO discrimination requires a fast forward 
model, i.e. a model calculating EMI responses for prospective targets that may be present. Many 
numerical techniques are available for EMI calculation in the magneto-quasistatic EMI regime, but most 
of them are not fast enough for inversion or complete enough to deal with realistic objects. One of the 
most successful models is the dipole model [1,2], in which one approximates a target's response with one 
or a number of infinitesimal magnetic dipoles, each responding independently to the local value of the 
transmitted ("primary") field that strikes it. The dipole model is a good approximation only if the 
observation position is far enough from the target and if the parts of the object do not interact significantly. 
However, in UXO detection and discrimination the sensor is often close to the target, and we have shown 
elsewhere that interaction effects can be very significant [3, 4].  Fast analytical solution for a spheroid in 
EMI frequencies range has been developed recently [5,6] and a spheroid model was shown to be capable 
of representing effectively some geometrically complex objects [7,8]. The spheroid model has two 
advantages: (1) It takes the near field effect into account, so it can also be used when the sensor is close; 
and (2) the target information (geometrical dimension, orientation, conductivity, magnetic permeability, 
etc.) can be estimated directly from model parameters. 

 

For more complicated, materially heterogeneous objects, the dipole or spheroid models are not wholly 
adequate, and detailed numerical solution by established method is too slow. The alternative is a 
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fundamental mode approach [3,9,10]. We choose a set of fundamental excitation modes whose linear 
combination can represent an arbitrary excitation field. The EMI response of the target to each 
fundamental mode is obtained and stored. Since the system we are studying is linear, if some general 
excitation field constitutes a particular superposition (linear combination) of inputs, the response will be a 
corresponding superposition of outputs. So one just needs to build a library for known UXOs, where the 
fundamental solutions (i.e. the response of each UXO to fundamental excitation modes) are stored. The 
EMI response of any UXO to an arbitrary excitation can then be easily constructed from the library data. 
There are two main approaches to obtain the fundamental solutions: (1) for relatively simple object whose 
components (geometry and electromagnetic properties of each parts) are known, the fundamental solution 
can be calculated directly through numerical simulation [3]. (2) For the more general case, the 
fundamental solution can be obtained indirectly from properly designed measurements (so called training 
data). A major difficulty in the fundamental mode approach is that the excitation fields from realistic EMI 
sensors are usually a combination of the fundamental modes, so the fundamental solution has to be solved 
through an inversion procedure, which often suffers from ill-conditioning. In this paper, we will first 
introduce a selected set of fundamental modes and two approaches for inferring fundamental solutions 
from the training data. Then we show two approaches to treat the ill-conditioning problem and 
demonstrate some results.  

2 Fundamental mode approach 

2.1 Expressing arbitrary primary fields using fundamental modes 
 
As elaborated elsewhere [11,12], in the EMI band we can usually consider the magnetic fields in the air 
and soil to be irrotational, with the result that they can be expressed as gradients of a scalar potential that 
satisfies the Laplace equation. Because UXO are typically elongated bodies of revolution, we choose 
Associated Legendre functions in prolate spheroidal coordinates as the fundamental solution forms.  On a 
spheroid surface away from the sensor, the primary EMI potential field can be written as a summation of 
fundamental modes: 
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where here and in what follows the coordinate system is centered on the scatterer, (η,ξ,φ) are the 
standard spheroidal coordinates,  d  is the inter-focal distance, m

nP is Associated Legendre 
functions of the first, of order m and degree n. Tpm(φ) is cos(mφ) for p = 0 and is sin(mφ) for p = 
1.  The coefficients pmnb can be obtained by using orthogonality relations for the Legendre functions.  
For the purpose of simplicity, we rewrite the series in the middle of (1) using a condensed subscript 
notation on the right, with max max max1 ( 1)k n m m n p m n= − + + ⋅ + ⋅ + ⋅ .  In practice, the series will be 
truncated, i.e. we will only consider terms: max max0 1, 0 , 1p m m m n m n≤ ≤ ≤ ≤ ≤ ≤ + − .To proceed for an 
arbitrary object, we define a spheroidal surface S surrounding the object, more or less conforming to its 
general shape, i.e. we choose some suitable d and ξο, though the details of that choice are not critical. 

2.2 Constructing general responses using fundamental solutions 
 

As for primary field, the scattered field outside of the target (as well as the exterior of the auxiliary 
spheroid) is irrotational and the scattered field potential function satisfies Laplace equation.  For each 
fundamental excitation rp

kψ , we represent the corresponding scattered field with a number of magnetic 
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charges located on (or inside) the auxiliary spheroid surface, i.e. the scattered potential fields 
corresponding to excitation rp

kψ at location R are 
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and the total scattered magnetic field will be 
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The magnetic charges i
kρ  are obtained by the methods described below and then stored before attacking 

any particular application. When arbitrary excitation fields are decomposed into basic modes (i.e. the bk 
are determined), then the scattered field can be easily computed by superposition (i.e. by (3) ). One of 
the essential steps is to obtain the fundamental solutions in the first place, which will be demonstrated in 
the next section. 

 

2.3 Inferring fundamental solutions from training data 
In numerical simulation, EMI response of a specific target to each fundamental excitation pr

jψ can be 
calculated individually.  However, it is not the case in real measurement because our instruments do not 
transmit individual fundamental excitation modes, one by one. The field from realistic sensor is usually a 
combination of a number of fundament modes. To approach this, we consider below the particular GEM-
3 sensor developed by Geophex Ltd.[13], which has distinguished itself in UXO discrimination 
application. 

2.3.1 Simple least squares approach 
The GEM-3 we are currently using is mono-static and measures only the component of the scattered field 
normal to the sensor head, so the forward model is expressed as: 

                        ( )3
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Where j is the index of the position Rj where that normal field was measured, and jN  is the direction 

normal to sensor head at point jR .  

For given a set of training data (well designed measurements for a specific target), i
pmnρ can be 

determined by minimizing  
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Using a least square error approach, we can build the normal equations  
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Here we define  
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The magnetic charge magnitude i
kρ (orq ) can be obtained by solving (6). 

 

2.3.2 Levenberg-Marquardt (LM) approach 
 

As we will show in the results section, the inverse problem is usually highly ill conditioned.  For this 
reason, we employ LM approach [14], where the magnetic charge magnitudes q are obtained through 
iteration with a regularization factor λ : 

 

        ( ) ( )1( 1) ( )k k λ
−+  = + + − 

T T dq q J J I J H H                       (9) 

Where dH is the measurement data, H=H(q) is the modeled value, and the Jacobian matrix 
∂=
∂
HJ
q

. 

3 Results 

3.1 Inherent ill-conditioning 
 
In general, the excitation field from a realistic EMI sensor contains mainly a small number of basic modes, 
with the contribution of other modes (usually high order modes) negligibly small. As an example, Figure 
1a shows the coefficients of basic modes pmnb  from GEM-3 for a spheroid with equation 

( ) ( )2 20.03 0.18 1x z+ = . The index is lined up according to the formulation 

max max max1 ( 1)k n m m n p m n= − + + ⋅ + ⋅ + ⋅  with max max5, 3n m= = . The first term 000b does not induce 
any scattering. So in this case the dominant terms are 001b  (k=2, corresponding to uniform axial 
excitation), 011b (k=6, uniform transverse excitation) and several other small terms. All the other terms are 
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essentially zero. Figure 1b is similar except that the sensor moves along a cubic box surrounding the 
spheroid and the summation of the coefficients pmnb from all positions are plotted. For both cases we see 
that the coefficients of many terms are very small compared to the dominant ones.   
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                                     (a)                                                                            (b) 

Figure 1 a) coefficient of fundamental modes pmnb , when the spheroid is 30 cm from the 40 cm diameter GEM-3 

sensor and is titled from the horizontal at 45° .    b) Summation of pmnb over all observations, as the sensor moves 

over a 90 cm square cube surrounding the spheroid.  

3.2 Least square approach 
 
As shown in previous section, the training data contains very little information on high order excitation 
modes. The consequence is that EMI data in this set of training data is not sensitive to the fundamental 
solution of these terms, i.e. kq∂ ∂H is close to zero, so that the matrix A in (6) is singular and the 
equation cannot be solved accurately. Fortunately, these high order terms also typically contribute very 
little in actual applications, so that the accurate fundamental solution of these terms is not necessary. This 
allows us to simply truncate these non-essential terms to reduce singularity. In this least squares approach, 

we define the criterion of truncation as k

k

b
max b ε≤ , where kmax b is the maximum of all 

coefficients except 1k = . Figure 2 shows an example of the field reconstruction for different values of ε. 
The target is an ellipsoid given by ( ) ( ) ( )2 2 20.01 0.03 0.18 1x y z+ + = and the surrounding spheroid 

is ( ) ( )2 20.03 0.18 1x z+ = . The training data were measured along a cubic box with surfaces 
at 0.45x m= ± , 0.45y m= ± , and 0.45z m= ± , with 100 measurements on each surface. Instead of  
actual measurements, the training data in this paper were synthetic ones calculated by the TSA code [11]. 
To better understand the spheroid position relative to measurement grid, we adopt the notation of Euler 
Angles ( , , )θ φ ψ  [15]. This box measurement is equivalent to fixing the rectangular grid corresponding 
to a side of the box and changing the center location 0 0 0( , , )x y z  and orientation of the target and 
spheroid as follows: 0 0x = , 0 0y = , 0 45z cm= − , 1 1 1( , , ) (0,0,0)θ φ ψ = , 2 2 2( , , ) ( ,0,0)θ φ ψ π= , 

3 3 3( , , ) ( / 2,0, 0)θ φ ψ π= , 4 4 4( , , ) ( / 2, 0, / 2)θ φ ψ π π= , 5 5 5( , , ) ( / 2,0, )θ φ ψ π π= , 6 6 6( , , )θ φ ψ =  
( / 2,0,3 / 2)π π . 
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Figure 2  EMI response constructed from fundamental solutions (green markers) compared to synthetic data (circles)  

 
To produce the fundamental mode solutions, 11 point charges are distributed uniformly in space on the 
surrounding spheroid surface. The fundamental solutions were obtained from the training data via (6). To 
check the accuracy of the inferred fundamental solutions, we calculated the EMI response along rows of 
observation points over the grid, with the central rows passing over the target, producing the serrated 
response pattern in Figure 2, which shows results for the phase quadrature component of 47970 Hz 
excitation.  The target parameters are ( , , ) ( / 2,0,0)θ φ ψ π= , 0 0 0x y= = ,  0 60z cm= − . The truncation 

criteria factors are 3 5 810 , 10 ,and 10− − −=ε . Results show that we can obtain reasonably accurate 
fundamental solutions by choosing a proper truncation criterion (i.e. 10-3 and 10-5 in this case). Our 
neglecting the truncated terms causes the remaining small error in the best results. As the truncation 
criterion becomes too small, the high order terms begin to induce singularity and may destroy the whole 
solution. 
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Figure 3 EMI response constructed from fundamental solutions (green markers) compared to measurements (circles) 

 
Figure 3 showed results of a standard 81cm UXO for both real and imaginary part at 330Hz. The 
UXO is centered on (-5, -5, -30) cm in the measurement grid coordinate, with a horizontal 
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orientation: ( , , ) ( / 2, / 2,0)θ φ ψ π π= . The training data are 3 set of measurements: (1) centerd at (-
5,0.66,-39.48)cm, angle ( , , ) (7 / 36, / 2,0)θ φ ψ π π=    (2) (-5,0.66,-39.48)cm, angle ( , , )θ φ ψ =  
(29 / 36,3 / 2,0)π π  (3)   center at (-5, -5,-20) cm, angle ( , , ) ( / 2, / 2,0)θ φ ψ π π= . The fundamental 
solutions are calculated with truncation parameter 410ε −=  and the modeled data match with measured 
ones pretty well. It should be noticed that the testing data is close to one set of training data (set 3). For 
more complete test of the model accuracy, more general measurements need to be done for comparison. 

3.3 LM approach 
 
Instead of simply truncating the “non-essential” terms (which is equivalent to setting their solution to be 
zero), in the LM approach we keep these terms and the iterative procedure will assign them some 
reasonable values, which produces more accurate solutions than simple truncation. This regularization 
factor λ makes sure that their value won’t become so erratic as to cause instability. For the same set of 
training data as in section 3.2, we set an initial value for λ, reducing it as the iteration proceeds. Once the 
error term stops decreasing, we set the regularization factor back to initial value and iterate again [16]. 
Experience shows that the solution is not very sensitive to λr and results are more accurate and stable than 
those from the least squares approach. Some examples are shown in as shown in Figure 4 . 
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 Figure 4.  EMI response constructed from fundamental solutions (green markers) compared to synthetic data 

(circles), based on the LM approach. 

 

4 Concluding discussion 
 
A fundamental mode approach was developed for fast calculation of the complete EMI response of 
complicated 3D objects.  For prospective targets, the fundamental solutions are obtained and stored in 
library. The response of these targets to arbitrary EMI excitation can then be constructed quickly by 
simple superposition of the fundamental solutions. Two approaches to infer fundamental solutions from 
training data (usually measurement data) were introduced: simple least squares error minimization and a 
Levenberg-Marquardt approach. Both approach give reasonable results if inversion control parameters are 
properly used. While the preliminary results are promising, further study is needed to make the approach 
more efficient and practical. More realistic targets need to be studied to determine the criteria for 
truncation and regularization parameters. We also seek better ways of distributing the magnetic charges to 
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reduce the number of unknowns and the computational cost. A better design of training data (especially 
bi-static data or data for three components of H) may also help to reduce ill-conditioning problems. 
 
Acknowledgment: This work was sponsored in part by the Strategic Environmental Research and 
Development Program and US Army CoE ERDC BT25 and AF25 programs 
 
 

References 
 
1. T. H. Bell, B. J. Barrow, and J. T. Miller, “Subsurface discrimination using electromagnetic induction sensors, 

IEEE Trans. Geosci. Remote Sensing,” vol. 39, pp.1286-1293, June 2001 
2. Y. Zhang, L. Collins, H. Yu, C. Baun, and Lawrence Carin, “Sensing of Unexploded Ordnance With 

MagnetometerSensing of Unexploded Ordnance With Magnetometer,” IEEE Trans. Geosci. Remote Sensing, 
Vol. 41, pp.1005-1015, May 2003. 

3. F. Shubitidze, K O’Neill, I. Shamatava, K. Sun and K.D. Paulsen, “Analysis of EMI scattering to support UXO 
discrimination: heterogeneous and multiple objects,” Detection and Remediation Technologies for Mines and 
Minelike Targets VIII (or48), Part of SPIE’s 17th Annual International Symposium on AeroSense, , Orlando, 
Florida, 21–25 April 2003, pp928-939. 

4. Shubitidze, K O’Neill,K.Sun , I. Shamatava , Interaction Between Highly Conducting and Permeable Metallic 
Objects in the EMI Frequency Range, ACES conference Mar 24-28, 2003 Monterey, CA, pp625-631. 

5. C. O. Ao, H. Braunisch, K. O’Neill and J. A. Kong “Quasi magnetostatic solution for a conducting and   
permeable spheroid with arbitrary excitation”, IEEE Trans, Geosci. Rem. Sens., Vol. 40, pp. 887-897, April, 
2002. 

6. B. E. Barrowes, K. O'Neill, T. M. Grzegorczyk, X. Chen and J. A. Kong, “Broadband electromagnetic 
induction solution for a conducting and permeable spheroid,” IEEE Trans. Geosci. Remote Sensing, submitted 
for publication, 2003. 

7. K. Sun, K O'Neill, I. Shamatava, F. Shubitidze, "Application of prolate Spheroid Solutions in Simulation of 
EMI Scattering with Realistic Sensors and Objects, " ACES conference, Monterey, CA. pp531-537, Mar 24-28, 
2003. 

8. K. Sun K. O’Neill, L. liu, F. Shubitidze, I. Shamatava, K. D. Paulsen, “Analytical Solutions For EMI Scattering 
From General Spheroids With Application in Signal Inversion for UXO Discrimination,” Detection and 
Remediation Technologies for Mines and Minelike Targets VIII (or48), Part of SPIE’s 17th Annual 
International Symposium on AeroSense, , Orlando, Florida, 21–25 April 2003, 1035-1045. 

9. X. Chen, K. O’Neill, T. M. Grzegorczyk, B. E. Barrowes, C. D. Moss, B. Wu, J. Pacheco, J. A. Kong, 
“Fundamental mode approach in electromagnetic induction scattering and inversion,” Progress in 
Electromagnetics Research Symposium (PIERS), Honolulu, Hawaii, October 2003 

10. F. Shubitidze, K O’Neill, K. Sun, I. Shamatava, and K.D. Paulsen, Fast direct and inverse EMI algorithms for 
enhanced identification of buried UXO with real EMI data. 2003 IEEE International Geoscience and Remote 
Sensing Symposium. Toulouse, France, July 21-25, 2003. 

11. K. Sun, K. O’Neill, F. Shubitidze, S. A. Haider, and K. D. Paulsen, “Simulation of electromagnetic induction 
scattering from targets with negligible to moderate penetration by primary fields,” IEEE Trans. Geosci. Remote 
Sensing, Vol. 40, pp.910-927, Apr. 2002. 

12. F. Shubitidze, K O’Neill, K. Sun, I. Shamatava, and K.D. Paulsen, A Combined MAS-TSA Algorithm for 
Broadband Electromagnetic Induction Problems, ACES conference Mar 24-28, 2003 Monterey, CA. pp566-572. 

13. I. J. Won, D. A. Keiswetter, D. R. Hanson, E. Novikova and T. M. Hall, “GEM-3: a monostatic broadband 
electromagnetic induction sensor,” Jour. Envir. Eng. Geophysics, Vol. 2, No. 1, pp53-64, 1997 

14. D. Marquardt, “An algorithm for least-squares estimation of non-linear parameters,” SIAM J. Appl. Math., Vol. 
11, pp.431-441,1963. 

15. G. Arfken, “Mathematical methods for Physicists”, 3rd ed. Orlando, FL: Academic Press, pp. 198-200, 1985  
16. Y.V. Kumar, “Image Enhancement techniques in a microwave breast image system”, Master thesis, Thayer 

School of Engineering, Dartmouth College, August, 2001. 
 

20th Annual Review of Progress in Applied Computational Electromagnetics

April 19-23, 2004 - Syracuse, NY     © 2004 ACES


	Main Menu
	Table of Contents
	Author Index
	President's Statement
	Chair's Statement
	Agenda
	Help
	Main Menu
	Table of Contents
	Author Index
	President's Statement
	Chair's Statement
	Agenda
	Help

